Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states that are sensitive to the single-ion-anisotropy (SIA) energy ( ), and intrachain ( ) and interchain ( ) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of , a chain compound where the tilting of Ni octahedra leads to a twofold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find , and a rhombic anisotropy energy . Mean-field modeling reveals that the ground state structure hosts spin canting of , which is not detectable above the noise floor of the elastic neutron diffraction data. Monte Carlo simulation of the powder-averaged magnetization, , is then used to confirm these Hamiltonian parameters, while single-crystal simulations provide insight into features observed in the data. Published by the American Physical Society2025more » « less
-
We investigate the magnetic properties of antiferromagnetic diamond-lattice, , hosting a single-ion anisotropy (SIA) orientation which alternates between neighboring sites. Through neutron diffraction measurements of the compound, the ordered state spins are found to align collinearly along a pseudo-easy axis, a unique direction created by the intersection of two easy planes. Similarities in the magnetization, exhibiting spin-flop transitions, and the magnetic susceptibility in the two compounds imply that the same magnetic structure and a pseudo-easy axis is also present for . We estimate the Hamiltonian parameters by combining analytical calculations and Monte Carlo (MC) simulations of the spin-flop and saturation field. The MC simulations also reveal that the spin-flop transition occurs when the applied field is parallel to the pseudo-easy axis. Contrary to conventional easy-axis systems, there exist field directions perpendicular to the pseudo-easy axis for which the magnetic saturation is approached asymptotically and no symmetry-breaking phase transition is observed at finite fields. Published by the American Physical Society2024more » « less
-
Kancharla, S (Ed.)We present the magnetic and structural properties of [Cu(pyrazine)0.5(glycine)]ClO4 under applied pressure. As previously reported, at ambient pressure this material consists of quasi-two-dimensional layers of weakly coupled antiferromagnetic dimers which undergo Bose-Einstein condensation of triplet excitations between two magnetic field-induced quantum critical points (QCPs). The molecular building blocks from which the compound is constructed give rise to exchange strengths that are considerably lower than those found in other S = 1/2 dimer materials, which allows us to determine the pressure evolution of the entire field-temperature magnetic phase diagram using radio-frequency magnetometry. We find that a distinct phase emerges above the upper field-induced transition at elevated pressures and also show that an additional QCP is induced at zero field at a critical pressure of pc = 15.7(5) kbar. Pressure-dependent single-crystal x-ray diffraction and density functional theory calculations indicate that this QCP arises primarily from a dimensional crossover driven by an increase in the interdimer interactions between the planes. While the effect of quantum fluctuations on the lower field-induced transition is enhanced with applied pressure, quantum Monte Carlo calculations suggest that this alone cannot explain an unconventional asymmetry that develops in the phase diagram.more » « less
An official website of the United States government
